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Abstract. In this paper we investigate the boundedness, the periodicity char-
acter and the global behavior of the positive solutions of the di¤erence equation

xn+1 = an +
xn

xn�1
; n = 0; 1; :::;

where fang is a sequence of nonnegative real numbers and the initial con-
ditions x�1; x0 are arbitrary positive real numbers.

1. Introduction
Di¤erence equations appear as natural descriptions of observed evolution, phe-

nomena because most measurements of time evolving variables are discrete and as
such those equations are in their own right important mathematical models. More
importantly, di¤erence equations also appear in the study of discretization methods
for di¤erential equations. Several results in the theory of di¤erence equations have
been obtained as more or less natural discrete analogues of corresponding results
of di¤erential equations. This is especially true in the case of Lyapunov theory
of stability. Nonetheless, the theory of di¤erence equations is a lot richer than
the corresponding theory of di¤erential equations. For example; a simple di¤erence
equation resulting from a �rst order di¤erential may have a phenomena often called
appearance of "ghost" solutions or existence of chaotic orbits that can only hap-
pen for higher order di¤erential equations and the theory of di¤erence equations is
interesting in itself.

Existence of the solutions of di¤erence equations of deferent orders and the study
of their qualitative properties such as locally, boundedness, global stability, the
periodicity have been discussed by many authors. See for examples [1-8], [10-14]
and [17-23].
Our aim in this paper is to discuss the behavior of the positive solutions of the

di¤erence equations:

(1.1) xn+1 = an +
xpn
xpn�1

; n � 0 .

where fang is a sequence of positive real numbers and the initial conditions
x�1; x0; and p are arbitrary positive real numbers. In this survey we consider three
cases of the sequence an.
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Our results generalize and complement some of the previous results in the liter-
atures. Moreover, some examples are given to illustrate the main results.

Here we recall some basic de�nitions and elementary results that will be usefull
in our study of Eq.(1).

Let J be an interval real numbers and let g : Jk+1 � J ! J; where g is a
continuously di¤erentiable function. Consider the di¤erence equation

(1.2) yn+1 = g(yn; yn�1; :::; yn�k); n � 0;
where y�k; y�k+1; :::; y0 2 J: An equilibrium point of Eq.(1.2) is a point y 2 R

such that y = g(y; y; :::; y): That is, y is a �xed point of the function g(y; y; :::; y):

De�nition: (Periodicity)
(a) A sequence fyng is said to be periodic with period p if

(1.3) yn+p = yn for n = 0; 1; ::: .

(b) A sequence fyng is said to be periodic with prime period p, or with minimal
period p, if it is periodic with period p and p is the least positive integer for which
(1.3) holds.

De�nition: (Permanence)
A di¤erence equation (1.2) is said to be permanent and bounded if there exists

numbers m and M; with 0 < m � M < 1;such that for any initial conditions
y�k; y�k+1; :::; y0 2 (0;1) there exists a positive integer N which depends on the
initial conditions such that

m < yn < M; for all n � N:
The linearized equation of Eq.(1.2) about the equilibrium point y is

(1.4) zn+1 = a1zn + a2zn�1 + :::+ ak+1zn�k;

where ai =
@f

@yn�i
(y; y; :::; y); i = 0; 1; :::; k: The characteristic equation of Eq.(1:4)

is

�k+1 �
k+1X
i=1

ai�
k�i+1 = 0:

De�nition: (Stability)
(i) The equilibrium point y of Eq.(1:2) is locally stable if for every � > 0; there

exists � > 0 so for all y�k; y�k+1; :::; y0 2 J with
jy�k � yj+ jy�k+1 � yj+ :::+ jy0 � yj < �;

we have
jyn � yj < �; for all n � �k:

(ii) The equilibrium point y of Eq.(1:2) is globally asymptotically stable if y is
locally stable and there exists � > 0;such that for all y�k; y�k+1; :::; y0 2 J
with

jy�k � yj+ jy�k+1 � yj+ :::+ jy0 � yj < �;
we have

lim
n!1

yn = y:
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(iii) The equilibrium point y of Eq.(1:2) is global attractor if for all y�k; y�k+1; :::; y0 2
J;
we have

lim
n!1

yn = y:

(iv) The equilibrium point y of Eq.(1:2) is globally asymptotically stable if y is
locally stable, and y is also a global attractor of Eq.(1:2):

(iiv) The equilibrium point y of Eq.(1:2) is unstable if y is not locally stable.

De�nition: (a) A positive semicycle of a solution fyng of Eq.(1:2) consists
of a "string"of terms fyj ; yj+1; :::; yng; all greater than or equal to the equilibrium
y;with j � �1 and n � 1 and such that

either j = �1; or j > �1 and yj�1 < y;

and
either n =1; or n <1 and yn+1 < y:

(b) A negative semicycle of a solution fyng of Eq.(1:2) consists of a "string"of
terms fyk; yk+1; :::; yng; all less than to the equilibrium y;with k � �1 and n � 1
and such that

either k = �1; or k > �1 and yk�1 � y;
and

either n =1; or n <1 and yn+1 � y:
De�nition: (Oscillatory)
(a) A sequence fyng is called to oscillate about zero or simply to oscillate if

the terms yn are neither eventually all positive nor eventually all negative.
Otherwise, the sequence is called nonoscillatory. A sequence fyng is called
strictly oscillatory if for every n0 � 0;there exists n1; n2 � n0 such that
yn1yn2 < 0:

(b) A sequence fyng is called to oscillate about y if the sequence fyn � yg
oscillates.

(c) A sequence fyng is said strictly oscillatory about y if the sequence fyn�yg
is strictly oscillatory.

Let J be some interval real numbers and let g : J � J ! J be a continuously
di¤erentiable function. Then for every set of initial conditions x0; x�1 2 J; the
di¤erence equation

(1.5) yn+1 = g(yn; yn�1); n = 0; 1; ::: .

has a unique solution fyng1n=�1: The linearized equation of Eq.(1.5) is
zn+1 = a1zn + a2zn�1:

Theorem A [15] A (linearized stability).

(a) If both roots of the quadratic equation

(1.6) �2 � a1�� a2 = 0;
lie in the open unit disk j�j < 1; then the equilibrium point y of Eq.(1.5) is

locally asymptotically stable.

(b) If at least of the roots of Eq.(1.6) has absolute value greater that one , then
the equilibrium y of Eq.(1.5) is unstable.
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(c) A necessary and su¢ cient condition for both roots of Eq.(1.6) to lie in the
open unit disk j�j < 1; is

ja1j < 1� a2 < 2:

Here the locally asymptotically stable equilibrium y is also called a sink.

(d) A necessary and su¢ cient condition for one root of Eq.(1.6) to have absolute
value great than one and for the other to have absolute values less than one
is

ja1j > j1� a2j and a21 + 4a2 > 1:

In this case y is called a saddle point.

Theorem B [15] Let [c; d] be an interval of real numbers and assume that

f : [c; d]� [c; d]! [c; d]

is a continuous function satisfying the following properties:

(a) g(x; y) is non-decreasing in x 2 [c; d] for each y 2 [c; d] , and g(x; y) is
non-increasing in y 2 [c; d] for each x 2 [c; d]:

(b) If (m;M) 2 [c; d]� [c; d] is a solution of the system

f(m;M) = m; and f(M;m) =M ,

thenm =M: Then Eq:(1:5) has a unique equilibrium y 2 [c; d] and every solution
of Eq:(1:5) converges to y:

Theorem C [16] Assume that a1; a2; :::; ak+1 2 R: Then
k+1X

i=1

j ai j< 1

is a su¢ cient condition for the locally stability of Eq.(1.2).

Consider the vector di¤erence equation

(1.7) Xn+1 = H(Xn); n = 0; 1; ::: .

where Xn 2 Rk+1 for every n � 0 and H 2 C1[Rk+1; Rk+1]: Then by translating
the equilibrium X to 0 2 Rk+1 one can see that linearized equation associated with
Eq.(1.7) is given by Yn+1 = AYN ; where A is the Jacobian matrix DH(X) of the
function H evaluated at the equilibrium X:

Theorem D [16] Let X be an equilibrium point of Eq.(1.7) and assume that H
is a C1 function in Rk+1: Then the following statements are true:

(a) If all the eigenvalues of the Jacobian matrix DH(X) lie in the open unit
disk j�j < 1; then the equilibrium X of Eq.(1.7) is asymptotically stable.

(b) If at least one eigenvalues of the Jacobian matrix DH(X) has absolute
value greater that one, then the equilibrium X of Eq.(1.7) is unstable.

Theorem E [16] Consider the di¤erence equation

(1.8) xn+1 = f(xn; :::; xn�k); n = 0; 1; :::;
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where f 2 C[(0;1)k+1; (0;1)] is increasing in each of its arguments, where
the initial conditions x�k; :::; x0 are positive. Assume that Eq.(1.8) has a unique
positive equilibrium x; and suppose that the function h de�ned by

h(x) = f(x; x; :::; x); y 2 (0;1);

satis�es

(h(x)� x)(x� x) < 0, for x 6= x:
Then x is a global attractor of all positive solutions of Eq.(1.8).

Theorem F [9] Let J be some interval of real numbers, f 2 C[Jv+1; J ]; and let
fxng1n=�v be a bounded solution of the di¤erence equation

(1.9) xn+1 = f(xn; xn�1; :::; xn�v); n = 0; 1; :::;

with

I = lim
n!1

inf xn; S = lim
n!1

supxn, with I; S 2 J:

Let Z denote the set of all integers f:::;�1; 0; 1; :::g: Then there exist two solutions
fIng1n=�1 and fSng1n=�1 of the di¤erence equation

(1.10) xn+1 = f(xn; xn�1; :::; xn�v);

which satisfy the equation for all n 2 Z; with

I0 = I; S0 = S; and In; Sn 2 [I; S]; for all n 2 Z;

and such that for every N 2 Z, IN and SN are limit points of fxng1n=�v .
Therefore, for every m � �v there exist two subsequences fx

rn
g and fx

ln
g of the

solution fxng1n=�v so the following are true:

lim
n!1

xrn+N = IN , and lim
n!1

xln+N = SN , N � m:

The solutions fIng1n=�1 and fSng1n=�1 of Eq.(1.10) are called Full limiting
solutions of Eq.(1.10) associated with the solution fxng1n=�v of Eq.(1.9).

This paper is divided into two parts. Part I deals with the Eq.(1.1) when p = 1:
Part II concerned with Eq.(1.1) when p is a positive real number.

Part I: Studing of Eq.(1.1) with P=1

Here our goal is to consider the local stability, the boundedness character, and
the global asymptotic behavior of the positive solutions of the di¤erence equation:

(1.11) xn+1 = an +
xn
xn�1

; n � 0;

where fang is a sequence of nonnegative real numbers and the initial condition
x�1; andx0 are positive real numbers.
In the following we consider three cases of the sequence fang:
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2. Case 1. When lim
n!1

an = a

Permanence of Eq.(1.11)

In this subsection we investigate the boundedness of Eq.(1.11).

Theorem 1. Suppose that lim
n!1

an = a � 1; at that point every positive solution of
Eq.(1.11) is bounded and persists.

Proof. Suppose that fxng1n=�1 be a positive solution of Eq.(1.11). Then
xn � a > 1; for all n � 1:

Let � 2 (0; a� 1); we see from Eq.(1.11) that

xn � a� �; for all n � �1:
Then we can �nd L 2 (a+ �; a+ �+ 1) such that

L� � � x�1; x0 �
L� �

L� a� � :

Since a > 1; then we get

a � L� �� 1
L� �� a:

Set
f(u; v) = a+

u

v
:

Then

f(L� �; L� �
L� a� � ) = a+

L� �
L��

L�a��
= L� �;

and

f(
L� �

L� a� � ; L� �) = a+
L�a��
L��
L� � � a+

1

L� a� � �
L� �

L� a� � :

Now it follows from Eq.(1.11) that

x1 = f(x0; x�1) � f(
L� �

L� a� � ; L� �) �
L� �

L� a� � :

Again we see from Eq.(1.11) that

x1 = f(x0; x�1) � f(L� �;
L� �

L� a� � ) = L� �:

By induction we obtain that

L� � � xn �
L� �

L� a� � ; for all n = �1; 0; 1; :::.

Second assume that a = 1 and let � 2 (0; �) and � 2 (0; 1); it follows from Eq.(1.11)
that

xn � 1� �+ � ; for n � 1:
Then one can �nd L 2 (1 + �+ �; 2 + �+ �) such that

L� �+ � � x�1; x0 �
L� �+ �

L� �� 1 + � :

In this way whatever is left of the proof is like the above and it is overlooked. �
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Global Attractity of Eq.(1.11)
Here, we show that if a > 1; Therefore every positive solution of Eq.(1.11)

converges to (a+ 1):

Theorem 2. Assume that a � 1: At that point each positive solution of Eq.(1.11)
converges to the unique positive equilibrium point x = (a+ 1) of Eq.(1.11).

Proof. Note, when a � 1; it was shown in Theorem 1.2.1 that each positive
solution of Eq.(1.11) is bounded. Then we have the following

s = lim
n!1

inf xn; and S = lim
n!1

supxn:

It is clear that s � S: We want to proof that s � S: Now it is easy to see from
Eq.(1.11) that

s � a+ s

S
; and S � a+ S

s
:

Thus we have

sS � aS + s; and sS � as+ S:

This implies

aS + s � as+ S:

Then we get

a(S � s) � (S � s);

or

(a� 1)(S � s) � 0, s � S:

Thus the proof is complete. �

Example 1. Figure (1) shows the global attractivity of the equilibrium point x = 2
of Eq.(1.11) whenever x�1 = 1:21; x0 = 1:32; and a = 1:

F igure (1)
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Example 2. Figure (2) shows the global attractivity of the equilibrium point x = 6
of Eq.(1.11) whenever x�1 = 4; x0 = 9; and a = 5:

Figure (2)

3. Case 2. When an is periodic

In this subsection we research the periodicity character of the positive solu-
tions of Eq.(1.11) whenever fang is a periodic sequence of period two of the form
f�; �; �; �; :::g; � 6= �. Assume that a2n = �; and a2n+1 = �. Then we have

(3.1) x2n+1 = �+
x2n
x2n�1

;

and

(3.2) x2n+2 = � +
x2n+1
x2n

; n � 0.

Periodicity of the solutions
Here we investigate the periodic solutions of Eq.(1.11).

Theorem 3. Assume that fang = f�; �; �; �; :::g; with � 6= �: Then Eq.(1.11) has
periodic solution of prime period two.

Proof. Let fxng be a solution of Eq.(1.11), with the initial values x�1; and x0 such
that

(3.3) x�1 =
�x�1 + x0
x�1

; and x0 =
�x0 + x�1

x0
:

Let x�1 = x; and x0 = y; then we obtain from (3.3)

(3.4) x = �+
y

x
; and y = � +

x

y
:

Now we want to prove that (3.4) has a solution (x; y); x > 0; y > 0: From the �rst
relation of (3.4) we get

(3.5) y = (x� �)x:
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From (3.5) and the second relation of (3.4) we obtain

x(x� �) = � + x

x(x� �) ;

or
x(x� �)2 � �(x� �)� 1 = 0:

Now de�ne the function

(3.6) f(x) = x(x� �)2 � �(x� �)� 1; x > �:

Then
lim
x!�+

f(x) = �1; and lim
x!1

f(x) =1:

Hence Eq.(3.6) has at least one solution x > �: Then if y = (x � �)x; we have
that the solution fxng1n=�1 is periodic of prime period two. �

Example 3. Figure (3) shows that the solution of Eq.(1.11) is periodic solution of
period two when x�1 = 1:34; x0 = 3:210, � = 1; and � = 0:1:

Figure (3)

Local Stability of the periodic solutions
Here we investigate the local stability character of Eq.(1.11).

Theorem 4. Assume that fxng1n=�1 be a periodic solution of period two of Eq.(1.11)
and consider Eq.(1.11) when the case fang = f�; �; �; �; :::g with � 6= �. Suppose
that

�

�2
+

1

��
+
1

�3
<
�

x
:

Then fxng1n=�1is locally asymptotically stable.

Proof. It was shown in Theorem 1.3.1 that there exist x; y such that

(3.7) x = �+
y

x
; and y = � +

x

y
:
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Now Eq.(1.11) can be rewritten in the following form by splitting the even-
indexed and odd-indexed terms:

(3.8)
un+1 = �+

vn
un
;

vn+1 = � +
�un+vn
unvn

:

Now, we consider the map T on [0;1)� [0;1) such that

T (u; v) =

�
T1(u; v)

T2(u; v)

�
=

�
�+ v

u

� + �u+v
uv

�
:

Then we have
@T1
@u

=
�v
u2
; and

@T1
@v

=
1

u
;

@T2
@u

=
�v2
v2u2

; and
@T2
@v

=
��u2
u2v2

;

Therefore the Jacobian matrix of T at (x; y) is

JT (x; y) =

� �y
x2

1
x2�1

x2
��
y2

�
;

and its characteristic equation associated with (x; y) is

(3.9) �2 + �(
�

y2
+
y

x2
) +

�

x2y
+
1

x3
= 0:

It follows from (3.7) that y

x2
= 1� �

x and since x > �; and y > � we have

�

y2
+
y

x2
+

�

x2y
+
1

x3
<
�

�2
+

1

��
+
1

�3
+ 1� �

x
< 1:

Thus
�

�2
+

1

��
+
1

�3
<
�

x
< 1:

Then all roots of Eq.(3.9) have modulus less than 1. Therefore by Theorem D
that System (3.8) is asymptotically stable. The proof is complete. �

Theorem 5. Assume that fang = f�; �; �; �; :::g; with � 6= �:Then every solution
of Eq.(1.11) converges to a period two solution of Eq.(1.11).

Proof. We know by Theorem 1.2.1 that every positive solution of Eq.(1.11) is
bounded, it follows that there are some positive constants l; L; s; and S such that

l = lim
n!1

inf x2n+1; and L = lim sup
n!1

x2n+1;

s = lim
n!1

inf x2n; and S = lim sup
n!1

x2n:

Then it is easy to see from Eq.(3.1) and Eq.(3.2) that

l � �+ s

L
; and L � �+ S

l
;

and

s � � + l

S
; and S � � + L

s
:

Then we obtain
Ll � �L+ s; and Ll � �l + S;

and
Ss � �S + l; and Ss � �s+ L:
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Thus we get

�L+ s � Ll � �l + S; and �S + l � Ss � �s+ L:

Thus we have

(3.10) �(L� l) � S � s; and �(S � s) � L� l:

Thus it is clear from (3.10) that s = S and l = L: Now suppose lim
n!1

x2n+1 = S;

and lim
n!1

x2n = L: We want to proof that S 6= L: From Eq.(3.1) and Eq.(3.2) we
get

S = �+
L

S
; and L = � +

S

L
:

As that sake of contradiction assume that L = S; then

L = �+ 1; and S = � + 1

thus � = � which is a contradiction. So lim
n!1

x2n+1 6= lim
n!1

x2n: The proof is so

complete. �

Example 4. Figure (4) shows the global attractivity of the equilibrium point of
Eq.(1.11) is when x�1 = 2:3; x0 = 1:3, � = 0:73827543; and � = 0:6763772:

F igure (4)
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Example 5. Figure (5) shows every solution of Eq.(1.11) converges to a period
two solution when x�1 = 15:30; x0 = 10:30, � = 6; and � = 1:

Figure (5)

4. Case 3. The autonomous case of Eq.(1.11)

Consider Eq.(1.11) with an = a; where a 2 (0;1) then Eq.(1.11) has the form

(4.1) xn+1 = a+
xn
xn�1

; n = 0; 1; :::;

where the initial conditions x�1; x0 are arbitrary positive numbers. Clearly, the
only equilibrium point of Eq.(4.1) is x = a+ 1:
The linearized equation of Eq.(4.1) about the equilibrium point x = a+ 1 is

yn+1 �
1

a+ 1
yn +

1

a+ 1
yn�1 = 0.

Local Stability

In this subsection we deal the local stability of Eq.(4.1).

Lemma 1. The following statements are true.
1. The equilibrium point x = a+ 1 of Eq.(4.1) is locally asymptotically stable if

a > 1:
2. The equilibrium point x = a+ 1 of Eq.(4.1) is unstable if 0 � a � 1:

Proof. The proof is followed directly by Theorem A and so will be omitted. �
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4.1. Boundedness. Here, we investigate the bounded character of Eq.(4.1).

Theorem 6. Suppose that a > 1; then every positive solution of Eq.(4.1) is
bounded.

Proof. It follows from Eq.(4.1) that

x2n+1 = a+
x2n
x2n�1

;

x2n = a+
x2n�1
x2n�2

:

Therefore
x2n�1 > a; and x2n�2 > a; for every n � 1:

Then

x2n+1 = a+
x2n
x2n�1

< a+
x2n
a
; and x2n = a+

x2n�1
x2n�2

< a+
x2n�1
a

Then it follows by induction that

x2n+1 < a+ (1 +
1

a
+
1

a2
+ :::) +

x�1
an

= a+
a

a� 1 +
x�1
an
;

and

x2n < a+ (1 +
1

a
+
1

a2
+ :::) +

x0
an
= a+

a

a� 1 +
x0
an
:

The result now follows. �

Theorem 7. Assume that a > 1 then every solution of Eq.(4.1) is bounded and
persists.

Proof. Let fxng1n=�1 be a positive solution of Eq.(4.1), then

(4.2) xn+1 = a+
xn
xn�1

> a; for all n � 1:

Again it follows from Eq.(4.1) that

xn+1 = a+
xn
xn�1

� a+ xn
a
:

Then

(4.3) lim supxn �
a

1� 1
a

=
a2

a� 1 :

Then the result follows from (4.2) and (4.3). �

Global attractor

In the following Theorem, we establish su¢ cient conditions for global attractor
of Eq.(4.1).

Theorem 8. Assume that a > 1:Then the equilibrium point x = a + 1 is a global
attractor of Eq.(4.1).
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Proof. Let f : [c; d]2 ! [c; d] be a function de�ned by f(u; v) = a+ u
v : Assume that

(m;M) is a solution of the system

m = f(m;M); and M = f(M;m):

Then we get
(a� 1)(M �m) = 0;

Since a > 1; then we obtain
M = m:

It follows by Theorem B that x is a global attractor of Eq.(4.1) and then the
proof is complete. �

Remark 1. In case 3 this case has been treated by many others such as [Amleh].
Here we give an alternative proofs of our results.

Part II : Studying of Eq.(1.1)
In this part we investigate the behavior of the positive solutions of the di¤erence

equation

xn+1 = an +
xpn
xpn�1

; for n � 0;

where p is a positive real number, an is a positive sequence and the initial
conditions x�1; x0 are positive real numbers.

5. Case 1. When an = a 2 R+

In this case Eq.(1.1) takes the form

(5.1) xn+1 = a+
xpn
xpn�1

; n = 0; 1; 2::: .

Local Stability of the Equilibrium Points

At the present we discuss the local stability character of the solutions of Eq.(5.1).
It is easy to see that the only positive equilibrium point of Eq.(5.1) is given by

x = a+ 1: Let f : (0;1)2 ! (0;1) be a function de�ned by

f(x; y) = a+
xp

yp
:

Therefore
@f(x; y)

@x
=
pxp�1

yp
; and

@f(x; y)

@y
= � pxp

yp+1
:

We see that
@f(x; x)

@x
=

p

a+ 1
= p1, and

@f(x; x)

@y
= � p

a+ 1
= p2 .

Then the linearized equation of Eq.(5.1) about x is

yn+1 �
p

a+ 1
yn +

p

a+ 1
yn�1 = 0:
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Theorem 9. The following statements are valid:
(i) if p < a+1; furthermore the positive equilibrium point x of Eq.(5.1) is locally

asymptotically stable, and is called a sink.
(ii) If p > a + 1; then the positive equilibrium point x of Eq.(5.1) is unstable,

and is called a repeller.
(iii) If p = a + 1; then the positive equilibrium point x of Eq.(5.1) is unstable,

and is called a nonhyperbolic point.

Proof. (i) We set p1 =
p
x ; and p2 = �

p
x : So by Theorem A (a)

j p1 j �1 + p2 < 0,
p

a+ 1
� p

a+ 1
� 1 < 0() �1 < 0:

Also
1 + p2 � 2 < 0() �1 + p

a+ 1
< 0, p

a+ 1
< 1:

which is valid i¤
p < a+ 1:

So x is locally asymptotically stable when p < a+ 1:
(ii) By Theorem A (d) we have

j p2 j �1 =
p

a+ 1
� 1 > 0() p

a+ 1
> 1;

and
j p1 j � j 1� p2 j=

p

a+ 1
� 1� p

a+ 1
= �1:

Thus x is unstable (repeller point) when p > a+ 1:
(iii) By Theorem A (e) we have

p2 = �1, � p

1 + a
= �1, �p = �(a+ 1), p = a+ 1;

and
j p1 j �2 � 0,

p

a+ 1
� 2 � 0, p � 2(a+ 1):

Thus x is unstable (repeller point) when p > a+ 1: �

Boundedness of Solutions of Eq.(5.1)

In this subsection we discuss the su¢ ction conditions for bounded solution of
Eq.(5.1).

Theorem 10. If 0 < p < 1, consequently every positive solution of Eq.(5.1) is
bounded and persists.

Proof. We obtain from Eq.(5.1) that

xn+1 > a; n � 0:
Hence fxng persists. It follows again of Eq.(5.1) that

x2n+1 � a+ (
x2n
a
)p, n = 0; 1; ::: .

Now we suppose the di¤erence equation

(5.2) yn+1 = a+ (
yn
a
)p; n � 0:
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Let fyng be a solution of Eq.(5.2) with y0 = x0. Thus, clearly
x2n+1 � yn+1 (resp x2n+2 � yn+1); n = 0; 1; ::: .

We will establish that the sequence fyng is bounded. Let

f(x) = a+
xp

ap
:

Then

f
0
(x) =

1

ap
pxp�1 > 0; and f

00
(x) =

1

ap
p(p� 1)xp�2 < 0:

Therefore the function f is increasing and concave . Thus we obtain that there is
a unique �xed point y� of the equation f(y) = y: Likewise the function f satis�es

(f(y)� y)(y � y�) < 0; y 2 (0;1):
By Theorem E y� is a global attractor of all positive solutions of Eq.(5.2) and

so fyng is bounded. Then from Eq.(5.2) the sequence fxng is so bounded. This
�nishes the proof of the theorem. �

Example 6. Figure (6) shows the bounded solutions of the equilibrium point x = 24
of Eq.(5.1) whenever x�1 = 1:0323; x0 = 2:441; a = 23; and p = 0:000000002:

F igure (6)

Theorem 11. Assume that p � 4: Then Eq.(5.1) has unbounded solutions.

Proof. Note that for every solution fxng1n=�1of Eq.(5.1) the following inequality
holds:

(5.3) xn+1 >
xpn
xpn�1

; for n 2 N:

Let yn = lnxn: It follows from (5.3) that

(5.4) yn+1 � pyn + pyn�1 > 0:
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Note that the roots of the polynomial

p(�) = �2 � p�+ p,
are given by

�1; �2 =
p�

p
p2 � 4p
2

;

Since p � 4 we have that �1 > 1: On the other hand we have

�2 =
2p

p+
p
p2 � 4p

:

Hence if p � 4, both roots of p(�) are positive. Note that (5.4) can be rewritten in
the form

yn+1 � �1yn � �2(yn � �1yn�1) > 0:
Then we see that

(5.5)
xn+1

x�1n
> (

xn

x�1n�1
)�2 :

It follows that
xn

x�1n�1
> (

xn�1

x�1n�2
)�2 > ::: > (

x1

x�10
)�2 > (

x0

x�1�1
)�2 :

Select x�1 and x0 so that

x0 > 1; x0 = x
�1
�1:

Then it follows by (5.5) that

xn > (
x0

x�1�1
)�2x�1n�1 = x

�1
n�1 > ::: > x

�n1
0 ;

and consequently xn > x
�n1
0 ; n 2 N . Letting n ! 1; then xn ! 1. From which

the outcome takes after. �

Global Stability of Eq.(5.1)

Here we study the characteristic task of global stability of Eq.(5.1).

Theorem 12. Suppose that a � 1 and 0 < p < 1: Then the unique positive
equilibrium point of Eq.(5.1) is globally asymptotically stable.

Proof. By Theorem 1.5.1 (i) x is locally asymptotically stable. Thus it is su¢ ces
prove that every positive solution of Eq.(5.1) tends to the unique positive equilib-
rium x: Let fxng1n=�1 be a solution of Eq.(5.1). By Theorem 1.5.2 fxng1n=�1 is
bounded. Thus we have

a � s = lim inf xn; and S = lim supxn <1 .

Then we get from (5.1)

(5.6) S � a+ S
p

sp
; and s � a+ sp

Sp
:

We claim that S = s; otherwise S > s: We obtain from (5.6)

(5.7) spS � spa+ Sp; and sSp � Spa+ sp:
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Thus we have
s1�p < S1�p;

or equivalently

(5.8) sSp < Ssp:

It follows from Eq.(5.7) and Eq.(5.8) that

Spa+ sp � spa+ Sp:
Hence

Sp(a� 1) � sp(a� 1):
which is impossible for a � 1 . Hence the result follows. �

Example 7. Figure (7) shows the global attractivity of the equilibrium point x =
1:2000 of Eq.(5.1) whenever x�1 = 1:03; x0 = 2:441; a = 1:1; and p = 0:9:

F igure (7)

Oscillatory Solutions of Eq.(5.1)

Here we present the characteristic task of oscillatory solution of Eq.(5.1).

Theorem 13. Assume that 0 < p � 1; then every positive solution of Eq.(5.1)
oscillates about the equilibrium point x = a + 1 with semicycles of length two or
three and the extreme of every semicycle occurs at the �rst or the second term.

Proof. Let fxng1n=�1 be a positive solution of Eq.(5.1). First, we present every
positive semicycle except possibly the �rst term has two or three terms. Assume
that xN�1 < x; and xN � x; for some N 2 N. We obtain

xN+1 = a+
xpN
xpN�1

> a+ 1 = x:
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If xN+1 > xN ; so we get

xN+2 = a+
xpN+1
xpN

> a+ 1 = x:

Since p 2 (0; 1]; we include that

xN+2 = a+
xpN+1
xpN

� a+
xpN+1
xp

� a+
xpN+1
a+ 1

� xN+1:

So x < xN+2 < xN+1: Therefore

xN+3 = a+
xpN+2
xpN+1

< a+ 1 = x:

Then the proof is completed. �

Theorem 14. Eq.(5.1) has no periodic solutions of prime period two.

Proof. As the sake of contradiction. Assume that :::; x; y; x; y; ::: be a periodic
solution of period two of Eq.(5.1). It press that

(5.9) x = a+ (
y

x
)p; and y = a+ (

x

y
)p;

which suggest that

(5.10) y = a+
1

x� a:

Substituting from (5.9) into (5.10) and after some calculation we get

(5.11) (x� a)p+1xp = (a(x� a) + 1)p:
Taking the logarithm on both sides of (5.11), we acquire

(5.12) f(x) = (p+ 1) ln(x� a) + p lnx� p ln[a(x� a) + 1] = 0:
It is obvious that x = a+1 is an obvious solution of (5.12). Presently we examine

that this is the unique solution of the equation (5.12). Now

f�(x) =
(x� a)(ax+ p(a(x� a) + 1)) + (p+ 1)x

x(x� a)(a(x� a) + 1) :

Thus f�(x) > 0; for x 2 (a;1); which implies that the f is strictly increasing on
the interval (a;1): Hence, the equilibrium point x = a + 1 is the unique solution
of (5.12). From Eq.(5.11) we obtain y = a + 1 and consequently. This means
(a + 1; a + 1) is the unique solution of System (5.9). Finishing the proof of the
theorem. �

6. Case 2. When an be a periodic sequence of period two

In this section we study the behavior of solution of Eq.(1.1) while an is a periodic
sequence of period two with �; � 2 (0;1) and � 6= �. Consider a2n = �; and
a2n+1 = �: Then we have

(6.1)
x2n+1 = �+

xp2n
xp2n�1

;

x2n+2 = � +
xp2n+1
xp2n

:
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Now Eq.(1.1) can be rewritten in the following form:

(6.2)
un+1 = �+

upn
vpn
;

vn+1 = � +
vpn
upn
:

Locally stability

Here we discuss the local stability of System (6.2). It is easy to see that (u; v) =
(�+ 1; � + 1) is the unique positive equilibrium point of System (6.2).

Theorem 15. If p < (�+1)(�+1)
(�+1)p(�+1)p ; then the positive equilibrium point (u; v) =

(�+ 1; � + 1) of System (6.2) is locally asymptotically stable.

Proof. We consider the map T on [0;1)� [0;1) such that

T (u; v) =

�
T1(u; v)

T2(u; v)

�
=

�
�+ up

vp

� + vp

up

�
:

Then we have

@T1(u; v)

@u
= �pu

p�1vp

(up)2
; and

@T1(u; v)

@v
=
pvp�1

up
;

and

@T2(u; v)

@u
=
pup�1

vp
; and

@T2(u; v)

@v
= �pv

p�1up

(vp)2
:

Therefore the Jacobian matrix of T at (u; v) = (�+ 1; � + 1) is

J(E�;�) =

"
�pup�1vp

(up)2
pvp�1

up

pup�1

vp �pvp�1up

(vp)2

#
;

and the characteristic equation associated with (u; v) is

p(�) = �2 � �p( (� + 1)
p�1

(�+ 1)
+
(�+ 1)p�1

(� + 1)
):

Then we obtain

�1 = 0; �2 = p(
(� + 1)p�1

(�+ 1)
+
(�+ 1)p�1

(� + 1)
):

It follows by Theorem D that the equilibrium point (u; v) = (� + 1; � + 1) of
System (6.2) is locally asymptotically stable if p < (�+1)(�+1)

(�+1)p+(�+1)p : Then the proof
is completed. �

Example 8. Figure (8) shows the local stability of the equilibrium point
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(u; v) = (21:6073; 0:0780) of System (6.2) whenever u0 = 2:43; v0 = 0:4562;
� = 0:76; � = 0:03; and p = 0:54:

Figure (8)

Periodicity of Eq.(1.1)

In this subsection we investigate the excitons of periodic solutions of Eq.(1.1).

Theorem 16. Assume that fang = f�; �; �; �; :::g; with � 6= �: Then Eq.(1.1) has
periodic solution of prime period two.

Proof. To prove that Eq.(1.1) possess a periodic solution fxng of prime period two,
we must �nd positive numbers x�1; x0 such that

(6.3) x�1 =
�xp�1 + x

p
0

xp�1
; and x0 =

�xp0 + x
p
�1

xp0
:

Let x�1 = x; and x0 = y; then we obtain from (6.3)

(6.4) x = �+
yp

xp
; and y = � +

xp

yp
:

Now we want to prove that (6.4) has a solution (x; y); x > 0; y > 0: From the �rst
relation of (6.4) we have

(6.5) y = (x� �) 1P x:
From (6.5) and the second relation of (6.4) we get

x(x� �)
1
p = � +

xp

xp(x� �) ;

or
x(x� �)

p+1
p � �(x� �)� 1 = 0:

Now de�ne the function

(6.6) f(x) = x(x� �)
p+1
p � �(x� �)� 1; x > �:
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Then
lim
x!�+

f(x) = �1; and lim
x!1

f(x) =1:

Hence Eq.(6.6) has at least one solution x > �: Then if y = (x� �)
1
px; we have

that the solution fxng1n=�1 is periodic of prime period two. �

7. Case 3. When an is a positive bounded sequence

In this section we assume that an is a positive bounded sequence

(7.1) lim
n!1

inf an = a � 0; and lim
n!1

sup an = b <1:

Boundedness

The primary theorem indicate to the boundedness and the persistence of the
positive solutions of Eq.(1.1).

Theorem 17. Assume 0 < p < 1: Therefore every positive solution of Eq.(1.1) is
bounded and persists.

Proof. The proof is similar to the proof of Theorem 1.5.2 and will be omitted. �
Lemma 2. Assume that 0 < p � 1: Let lim

n!1
inf an = a � 0; and lim

n!1
sup an =

b <1 and fxng be a positive solution of Eq.(1.1). Then
ab� 1
b� 1 � lim

n!1
inf xn � lim

n!1
supxn �

ab� 1
a� 1 :

Proof. Assume

(7.2) lim
n!1

inf xn = �; and lim
n!1

supxn = �:

Let � > 0 for n � N0(�) we get
�� � � xn � �+ �; and a� � � an � b+ �:

Therefore

(7.3) xn+1 � a� �+ (
�� �
� + �

)p:

Taking the lim
n!1

inf for Eq.(7.3). We obtain

� � a� �+ (�� �
� + �

)p:

Since � > 0 is arbitrary,

(7.4) � � a+ (�
�
)p:

Similarly

(7.5) � � b+ (�
�
)p:

We get from equations (7.4) and (7.5) that

(7.6) ��p � a�p + �p; and ��p � b�p + �p:
Since 0 < p < 1 holds. Then we have

�1�p � �1�p;
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or equivalently

(7.7) ��p � ��p:
It follows from equations (7.6) and (7.7) that

a�p + �p � b�p + �p:
So

�p(a� 1) � �p(b� 1);
and we have

(
�

�
)p � b� 1

a� 1 ; and (
�

�
)p � a� 1

b� 1 :

We obtain from Eq.(7.4) for all n > N0(�) that

� � a+ (�
�
)p � a+ a� 1

b� 1 =
ab� 1
b� 1 :

Similarly from Eq.(7.5) we get

� � ab� 1
a� 1 :

Thus the proof is completed. �

Now de�ne the sequence fyng to be

yn =
xn
xn
; n = �1; 0; 1; :::,

where xn be a �xed solution of Eq.(1.1). Then Eq.(1.1) will be rewritten as

(7.8) yn+1 =
an + (

xn
xn�1

)p( yn
yn�1

)p

an + (
xn
xn�1

)p
:

Lemma 3. Let fxng be a �xed positive solution of Eq.(7.8). Then the following
statements are true.

(i) Eq.(7.8) has a positive equilibrium solution y = 1:
(ii) Let fyng be a solution of Eq.(7.8). Then except possibly for the �rst semi-

cycle, every solution of Eq.(7.8) has semicycle of length one.

Proof. (i) trivial.
(ii) Assume that for some n, yn�1 � yn: Then ( yn

yn�1
) < 1 and

(7.9) yn+1 =
an + (

xn
xn�1

)p( yn
yn�1

)p

an + (
xn
xn�1

)p
<
an + (

xn
xn�1

)p

an + (
xn
xn�1

)p
= 1:

Let fyng be an �nally oscillatory solution of Eq.(7.8) such as yn�1 < 1 and
yn � 1: From part (7.9) it follows that yn+1 < 1: Therefore the positive semicycle
has exactly one term. The proof for negative semicycle is similar. �

Lemma 4. Let fyng be a �xed positive solution of Eq.(7.8). Suppose that there
exists an m 2 f1; 2; :::g such that
(7.10) y2m�1 < 1; and y2m � 1:
Then

(7.11) y2n�1 < 1; and y2n � 1; for n = m;m+ 1; ::: .
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Moreover, if

(7.12) y2m�1 � 1; and y2m < 1:

Then

(7.13) y2n�1 � 1; and yn < 1; for n = m;m+ 1; ::: .

Proof. Let fyng be a solution of Eq.(7.8) such that Eq.(7.10) holds for an m 2
f1; 2; :::g: we have

y2m�1 =
an + (

xn
xn�1

)p( yn
yn�1

)p

an + (
xn
xn�1

)p
�
an + (

xn
xn�1

)p

an + (
xn
xn�1

)p
= 1:

Working inductively we can easily prove that Eq.(7.11) is satis�ed. Similarly we
can prove that if Eq.(7.12) holds for an m 2 f1; 2; :::g; then Eq.(7.13) is satis�ed.
This completes the proof of the lemma. �

Global attractor of the solutions

Here we investigate the global stability of Eq.(1.1).

Theorem 18. Let fxng be a �xed solution of Eq.(1.1). Suppose that one of the
following holds:

(i) 0 < p � 1
2 .

(ii) 1
2 < p < 1; a > 1; and a(a� 1) > b� 1:Then for every solution fxng of
Eq.(1.1) the relation lim

n!1
xn
xn
= 1 is true.

Proof. (i) Let fyng be a solution of Eq.(7.8). It is su¢ cient to prove that
lim
n!1

yn = 1

Suppose that there exists an m 2 f1; 2; :::g such that (7.10) or (7.12) . Without
loss of generality we may assume that (7.10) holds for an m 2 f1; 2; :::g and 0 <
p � 1

2 is satis�ed.
Let

(7.14) � = lim
n!1

inf yn; and � = lim
n!1

sup yn:

also

(7.15) � = lim
n!1

inf xn; and ! = lim
n!1

supxn;

and

(7.16) � =
!

�
:

De�ne the function F by

(7.17) F (x; y; z) =
x+ ypzp

x+ yp

for x; y:z > 0: Then we have

@F

@x
=
yp(1� zp)
(x+ yp)2

; and
@F

@y
=
pxyp�1(zp � 1)
(x+ yp)2
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Let n � m: Using Eq.(7.8) we have

(7.18)
y2n+1 = F (a2n;

x2n
x2n�1

; y2n
y2n�1

);

y2n+2 = F (a2n+1;
x2n+1
x2n

; y2n+1y2n
):

Since (7.10) holds by Lemma 3 we obtain the following:
y2n�1
y2n

< 1; and
y2n
y2n�1

� 1; for n � m:

using Eq.(7.1), (7.14)-(7.18) and monotonic properties of F we have

� � F (a; �; �
�
) =

a+ ( �� )
p�p

a+ �p
; and � � F (a; �; �

�
) =

a+ (�� )
p�p

a+ �p
;

or

��p � a�p + �p�p

a+ �p
; and ��p � a�p + �p�p

a+ �p
:

Then
a�p�p�1 + �2p�1�p � �p�p � a�p�p�1 + �2p�1�p:

Hence
a�p�p�1 + �2p�1�p � a�p�p�1 + �2p�1�p;

and so

�p(a�p�1 + �p�1(
�

�
)p�p) � �p(a�p�1 + �p�1( �

�
)p�p);

or

(
�

�
)p(a(

�

�
)p�1 � �p) � a� (�

�
)p�1�p:

Thus

a
�

�
� �p( �

�
)p � a� ( �

�
)1�p�p:

Since 0 < p � 1
2 ; we obtain

a(
�

�
� 1) � �p(( �

�
)p � ( �

�
)1�p):

Therefore

a(
�

�
� 1) � 0;

which implies that
� � �:

Thus we get that � = �: The proof is completed.
(ii) Now suppose 1

2 < p < 1; a > 1; and a(a� 1) > b� 1. Note that (
�
� )
p � b�1

a�1
and (�� )

p � a�1
b�1 : Then it follows by that (7.1), (7.14-7.18) and (

�
� )
p � b�1

a�1 and

(�� )
p � a�1

b�1 hold. Then we obtain

� � F (a; �
�
;
�

�
) =

a+ ( �� )
p( �� )

p

a+ ( �� )
p

�
a+ ( b�1a�1 )(

�
� )
p

a+ ( b�1a�1 )
;

and

� � F (a; �
�
;
�

�
) =

a+ ( �� )
p(�� )

p

a+ ( �� )
p

�
a+ ( b�1a�1 )(

�
� )
p

a+ ( b�1a�1 )
:
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Then

(7.19) �p� � a�p

a+ ( b�1a�1 )
+
( b�1a�1 )�

p

a+ ( b�1a�1 )
, and ��p � a�p

a+ ( b�1a�1 )
+
( b�1a�1 )�

p

a+ ( b�1a�1 )
:

Since � � � it follows that ��p � ��p: Therefore from (7.19) we get

a�p

a+ ( b�1a�1 )
+
( b�1a�1 )�

p

a+ ( b�1a�1 )
� a�p

a+ ( b�1a�1 )
+
( b�1a�1 )�

p

a+ ( b�1a�1 )
.

Then

(7.20) (
a

a+ ( b�1a�1 )
-
( b�1a�1 )

a+ ( b�1a�1 )
)�p �( a

a+ ( b�1a�1 )
-
( b�1a�1 )

a+ ( b�1a�1 )
)�p.

Since 1
2 < p < 1; a > 1; and a(a� 1) > b� 1, we obtain from (7.20) that � � �

and so � = �: Then the proof is completed. �

Periodicity of Eq.(1.1)

In the following theorem we �nd the su¢ cient conditions for the existence of
two-periodic solutions for Eq.(1.1).

Theorem 19. Assume that 0 < p < 1 and fang is a periodic sequence of period
twos. Then Eq.(1.1) has a periodic solution of prime period two.

Proof. For Eq.(1.1) posses a periodic solution fxng of prime period two, we must
�nd some positive numbers x�1; x0. Assume that fang = fa0; a1; a0; a1; :::g; such
that

(7.21) x�1 = x1 = a0 + (
x0
x�1

)p; and x0 = x2 = a1 + (
x1
x0
)p;

We shall show that System (7.21) is consistent. We get from Eq.(7.21)

(7.22) (x�1 � a0)(x0 � a1) = 1:
It follows that

(7.23)

(x�1 � a0)p+1 =
(a1(x�1 � a0) + 1)p

xp�1
; and (x0 � a1)p+1 =

(a0(x0 � a1) + 1)p
xp0

:

We de�ne a function F by

F (x) = (x� a0)p+1 �
(a1(x� a0) + 1)p

xp
; x > a0:

Then

F (a0) = �
1

a0
< 0; and F (a0 + 1) = 1�

(a1 + 1)
p

(a0 + 1)p
> 0:

Now let a1 < a0; then F has a zero, say x�1, in the interval (a0; a0 + 1); and in
view of equations (7.22) and (7.23) we get that Eq.(1.1) has a two-periodic solution.
Assume now that a1 > a0: We de�ne a function G such that

G(x) = (x� a1)p+1 �
(a0(x� a1) + 1)p

xp
; x > a1:
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Then

G(a1) = �
1

a1
< 0; F (a1 + 1) = 1�

(a0 + 1)
p

(a1 + 1)p
> 0:

Thus, G has a zero, say x0, in the interval (a1; a1 + 1); and in view of equations
(7.22) and (7.23) we get that Eq.(1.1) has a two-periodic solution. �

Theorem 20. Assume that fang = f�; �; �; �; :::g; with � 6= �:Then every solution
of Eq.(1.1) converges to a period two solution of Eq.(1.1).

Proof. We know by Theorem 1.7.1 that every positive solution of Eq.(1.1) is
bounded, therefore there are some positive constants l; L; s and S such that

l = lim
n!1

inf x2n+1; and L = lim sup
n!1

x2n+1;

s = lim
n!1

inf x2n; and S = lim sup
n!1

x2n:

Now we get from Eq.(1.1) that

(7.24)
x2n+1 = a2n +

xp2n
xp2n�1

;

x2n+2 = a2n+1 +
xp2n+1
xp2n

:

Therefore, it is easy to see from System (7.24) that

l � a0 +
sp

Lp
; and L � a0 +

Sp

lp
;

and

s � a1 +
lp

Sp
; and S � a1 +

Lp

sp
:

Then we obtain

Lpl � a0Lp + sp; and Llp � a0lp + Sp;
and

Sps � a1Sp + lp , and Ssp � a1sp + Lp:
So, we get

a0L
p + sp � Llp � Lpl � a0lp + Sp;

and
a1S

p + lp � Sps � Ssp � a1sp + Lp:
Thus, we have

(7.25) a0(L
p � lp) � Sp � sp; and a1(S

p � sp) � Lp � lp:
Thus it is clear from (7.25) that s = S and l = L: Now assume that lim

n!1
x2n+1 =

S and lim
n!1

x2n = L: We want to proof that S 6= L: From System(7.24) we get

S = �+
LP

SP
; and L = � +

SP

LP
:

As the sake of contradiction assume that L = S; then

L = �+ 1; and S = � + 1

thus � = � which is a contradiction. So lim
n!1

x2n+1 6= lim
n!1

x2n: The proof is so

completed. �
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